Robotics-based synthesis of human motion.

نویسندگان

  • O Khatib
  • E Demircan
  • V De Sapio
  • L Sentis
  • T Besier
  • S Delp
چکیده

The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres

This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...

متن کامل

DEVS-based Modeling of a Human Motion Data Synthesis System based on Motion Capture Data

This paper presents a DEVS-based model for a human motion data synthesis system. The model includes some major components of the human motion control system such as brain, spinal cord, and body. The system is designed to produce the output data in the form of motion capture data. The proposed model and the output data produced can be widely applied in areas such as robotics and multimedia (anim...

متن کامل

Synthesis of Dance Performance Based on Analyses of Human Motion and Music

Recent progress in robotics has a great potential, and we are considering to develop a dancing humanoid robot for entertainment robots. In this paper, we propose three fundamental methods of a dancing robot aimed at the sound feedback system in which a robot listens to music and automatically synthesizes dance motion based on the musical features. The first study analyzes the relationship betwe...

متن کامل

Study on Unit-Selection and Statistical Parametric Speech Synthesis Techniques

One of the interesting topics on multimedia domain is concerned with empowering computer in order to speech production. Speech synthesis is granting human abilities to the computer for speech production. Data-based approach and process-based approach are the two main approaches on speech synthesis. Each approach has its varied challenges. Unit-selection speech synthesis and statistical parametr...

متن کامل

Analysis of Motion of Micro-Gripper Exposed to the Electric Field and Thermal Stresses for Using in Micro-Robotics

Micro system technology is a relatively new scientific research that deals with the development and study of properties of materials in micro dimensions. Micro-grippers are widely used in switching, positioning, and assembling micron sized components in micro-robotics. In this study, the static and dynamic behavior of visco-elastic Micro-Tweezers under the thermal and electrostatic field is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physiology, Paris

دوره 103 3-5  شماره 

صفحات  -

تاریخ انتشار 2009